Beyond Vectors Hung-yi Lee

Introduction

- Many things can be considered as "vectors".
- E.g. a function can be regarded as a vector
- We can apply the concept we learned on those "vectors".
- Linear combination
- Span
- Basis
- Orthogonal
- Reference: Chapter 6

Are they vectors?

Are they vectors?

- A matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \square\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

- A linear transform
- A polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Are they vectors?

What is the zero vector?

- Any function is a vector?

Infinite

What is a vector?

R^{n} is a

vector space

- If a set of objects V is a vector space, then the objects are "vectors".
- Vector space:
- There are operations called "addition" and "scalar multiplication".
- u, v and w are in V, and a and b are scalars. $u+v$ and $a u$ are unique elements of V
- The following axioms hold:
- $u+v=v+u,(u+v)+w=u+(v+w)$
- There is a "zero vector" 0 in V such that $u+0=u$

unique

- There is $-u$ in V such that $u+(-u)=0$
- $1 u=u,(a b) u=a(b u), a(u+v)=a u+a v,(a+b) u=a u+b u$

Objects in Different Vector Spaces

In Vector Space R^{1}

In Vector Space R^{2}

Objects in Different Vector Spaces

All the polynomials with degree less than or equal to 2 as a vector space
 All functions as a vector space

Subspaces

Review: Subspace

- A vector set V is called a subspace if it has the following three properties:
- 1. The zero vector 0 belongs to V
- 2. If \mathbf{u} and \mathbf{w} belong to V , then $\mathbf{u}+\mathbf{w}$ belongs to V

Closed under (vector) addition

- 3. If \mathbf{u} belongs to V , and c is a scalar, then cu belongs to V

Are they subspaces?

- All the functions pass 0 at t_{0}
- All the matrices whose trace equal to zero
- All the matrices of the form

$$
\left[\begin{array}{cc}
a & a+b \\
b & 0
\end{array}\right]
$$

- All the continuous functions
- All the polynomials with degree $n \geqslant t^{n},-t^{n}$
- All the polynomials with degree less than or equal to n
$P:$ all polynomials, P_{n} : all polynomials
with degree less than or equal to n

Linear Combination and Span

Linear Combination and Span

- Matrices

$$
S=\left\{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right\}
$$

Linear combination with coefficient a, b, c

$$
a\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right]
$$

What is Span S?
All 2×2 matrices whose trace equal to zero

Linear Combination and Span

- Polynomials

$$
S=\left\{1, x, x^{2}, x^{3}\right\}
$$

Is $f(x)=2+3 x-x^{2}$ linear combination of the "vectors" in S ?

$$
f(x)=2 \cdot 1+3 \cdot x+(-1) \cdot x^{2}
$$

$$
\operatorname{Span}\left\{1, x, x^{2}, x^{3}\right\}
$$

$$
=P_{3}
$$

$$
\operatorname{Span}\left\{1, x, \cdots, x^{n}, \cdots\right\} \quad=P
$$

Linear Transformation

Linear transformation

- A mapping (function) T is called linear if for all "vectors" u, v and scalars c:
- Preserving vector addition:

$$
T(u+v)=T(u)+T(v)
$$

- Preserving vector multiplication: $T(c u)=c T(u)$

Is matrix transpose linear?

Input: $\mathrm{m} \times \mathrm{n}$ matrices, output: $\mathrm{n} \times \mathrm{m}$ matrices

Linear transformation

- Derivative:

linear?

- Integral from a to b

linear?

Null Space and Range

- Null Space
- The null space of T is the set of all "vectors" such that $T(v)=0$
- What is the null space of matrix transpose?
- Range
- The range of T is the set of all images of T.
- That is, the set of all "vectors" $T(v)$ for all v in the domain
- What is the range of matrix transpose?

One-to-one and Onto

- $U: \mathrm{M}_{m \times n} \rightarrow \mathrm{M}_{n \times m}$ defined by $U(A)=A^{T}$.
- Is U one-to-one? yes
- Is U onto? yes
- $D: P_{3} \rightarrow P_{3}$ defined by $D(f)=f^{\prime}$
- Is D one-to-one?
no
- Is D onto?
no

$$
x^{3}+2 x+3
$$

Isomorphism (同構)

Isomorphism

- Let V and W be vector space.

- A linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is called an isomorphism if it is one-to-one and onto
- Invertible linear transform
- W and V are isomorphic.

Example 1: $U: \mathrm{M}_{m \times n} \rightarrow \mathrm{M}_{n \times m}$ defined by $U(A)=A^{T}$.
Example 2: $T: \mathrm{P}_{2} \rightarrow \mathrm{R}^{3}$

$$
T\left(a+b x+\frac{c}{2} x^{2}\right)=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Basis

A basis for subspace V is a linearly independent generation set of V.

Independent

- Example

$$
S=\left\{x^{2}-3 x+2,3 x^{2}-5 x, 2 x-3\right\} \text { is a subset of } \mathrm{P}_{2}
$$

Is it linearly independent?

$$
3\left(x^{2}-3 x+2\right)+(-1)\left(3 x^{2}-5 x\right)+2(2 x-3)=\mathbf{0}
$$

- Example
$S=\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right\}$ is a subset of 2×2 matrices.
Is it linearly independent?

$$
a\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

implies that $a=b=c=0$

Independent

> If $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . . ., \mathrm{v}_{\mathrm{k}}\right\}$ are independe and T is an isomorphism, $\left\{\mathrm{T}\left(\mathrm{v}_{1}\right)\right.$, $\left.\mathrm{T}\left(\mathrm{v}_{2}\right), \ldots \ldots, \mathrm{T}\left(\mathrm{v}_{\mathrm{k}}\right)\right\}$ are independent

- Example The infinite vector set $\left\{1, x, x^{2}, \cdots, x^{n}, \cdots\right\}$ Is it linearly independent?

$$
\Sigma_{i} c_{i} x^{i}=0 \text { implies } c_{i}=0 \text { for all } i .
$$

- Example

$$
\begin{array}{rlr}
S=\left\{e^{t}, e^{2 t}, e^{3 t}\right\} \quad \text { Is it linearly independent? } \\
& a e^{t}+b e^{2 t}+c e^{3 t}=0 & a+b+c=0 \\
& a e^{t}+2 b e^{2 t}+3 c e^{3 t}=0 & a+2 b+3 c=0 \\
& a e^{t}+4 b e^{2 t}+9 c e^{3 t}=0 & a+4 b+9 c=0
\end{array}
$$

Basis

- Example

For the subspace of all 2×2 matrices,
The basis is

$$
S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \quad \operatorname{Dim}=4
$$

- Example

$$
S=\left\{1, x, x^{2}, \cdots, x^{n}, \cdots\right\} \text { is a basis of } \mathrm{P} . \quad \operatorname{Dim}=\inf
$$

Vector Representation of Object

- Coordinate Transformation

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}}: \quad & \text { Basis: }\left\{1, x, x^{2}, \cdots, x^{n}\right\} \\
& p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \longrightarrow\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]
\end{aligned}
$$

Matrix Representation of Linear Operator

- Example:
- D (derivative): $\mathrm{P}_{2} \rightarrow \mathrm{P}_{2}$

Represent it as a matrix

Matrix Representation of Linear Operator

- Example:
- D (derivative): $P_{2} \rightarrow P_{2}$

Represent it as a matrix

Matrix Representation of Linear Operator
 $$
\left[\begin{array}{lll} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right]\left[\begin{array}{c} 5 \\ -4 \\ 3 \end{array}\right]
$$

- Example:
- D (derivative): $P_{2} \rightarrow P_{2}$

Represent it as a matrix

Matrix Representation of Linear Operator

- Example:
- D (derivative): Function set $\mathrm{F} \rightarrow$ Function set F
- Basis of F is $\left\{e^{t} \cos t, e^{t} \sin t\right\}$
$\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$e^{t} \cos t$

Matrix Representation of Linear Operator

Eigenvalue and Eigenvector

$T(\boldsymbol{v})=\lambda \boldsymbol{v}, \boldsymbol{v} \neq \mathbf{0}, \boldsymbol{v}$ is eigenvector, λ is eigenvalue

Eigenvalue and Eigenvector

- Consider derivative (linear transformation, input \& output are functions)
Is $e^{a t}$ an "eigenvector"? ae What is the "eigenvalue"? a
Every scalar is an eigenvalue of derivative.
- Consider Transpose (also linear transformation, input \& output are functions)
Is $\lambda=1$ an eigenvalue?
Symmetric matrices form the eigenspace
Is $\lambda=-1$ an eigenvalue?
Skew-symmetric matrices form the eigenspace.

Symmetric:

$$
A^{T}=A
$$

Skew-symmetric:

$$
A^{T}=-A
$$

Consider Transpose of $\mathbf{2 \times 2}$ matrices

Eigenvalue and Eigenvector

- Consider Transpose of 2x2 matrices

Symmetric matrices

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \quad \operatorname{Dim}=3
$$

$\lambda=-1$
Skew-symmetric matrices

$$
\left[\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right]
$$

Dim=1

Inner Product

Norm (length): $\|v\|=\sqrt{\langle v, v\rangle}$

Inner Product

For any vectors u, v and w, and any scalar a, the following axioms hold:

$$
\begin{array}{ll}
\text { 1. }\langle u, u\rangle>0 \text { if } u \neq 0 & \text { 3. }\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle \\
\text { 2. }\langle u, v\rangle=\langle v, u\rangle & \text { 4. }\langle a u, v\rangle=a\langle u, v\rangle
\end{array}
$$

Dot product is a special case of inner product $c(u \cdot v) c>0$
Can you define other inner product for normal vectors?

Inner Product

- Inner Product of Matrix

$$
\begin{array}{rr}
\text { Frobenius } & \langle A, B\rangle \\
\text { inner product } & \operatorname{trace}\left(A B^{T}\right) \\
& =\operatorname{trace}\left(B A^{T}\right) \\
\left\langle\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right],\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]\right)=1 \cdot 5+2 \cdot 6+3 \cdot 7+4 \cdot 8=70 \\
\text { Element-wise multiplication }
\end{array}
$$

$$
\begin{aligned}
& \text { 1. }\langle u, u\rangle>0 \text { if } u \neq 0 \\
& \text { 2. }\langle u, v\rangle=\langle v, u\rangle \\
& \text { 3. }\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle \\
& \text { 4. }\langle a u, v\rangle=a\langle u, v\rangle
\end{aligned}
$$

- Inner product for any function with input [-1, 1]
$\langle g, h\rangle=\int_{-1}^{1} g(x) h(x) d x$ $=\int_{-1}^{1} x d x=0$

```
ls g(x)=1 and
h(x)=x orthogonal?
```

$\langle g, h\rangle=\sum_{i=-10}^{10} g\left(\frac{i}{10}\right) h\left(\frac{i}{10}\right)$
Can it be inner product for general functions?
$u\left(\frac{i}{10}\right)=0$, otherwise $\neq 0 \quad\langle u, u\rangle=0$, but $u \neq 0$

Orthogonal/Orthonormal Basis

- Let u be any vector, and w is the orthogonal projection of u on subspace W .
- Let $S=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ be an orthogonal basis of W .

$$
\begin{array}{r}
w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k} \\
\frac{u \cdot v_{1}}{\left\|v_{1}\right\|^{2}} \frac{u \cdot v_{2}}{\left\|v_{2}\right\|^{2}} \quad \frac{u^{\downarrow} \cdot v_{k}}{\left\|v_{k}\right\|^{2}}
\end{array}
$$

- Let $S=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ be an orthonormal basis of W .

$$
w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}
$$

Orthogonal Basis

Let $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ be a basis of a subspace V . How to transform $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ into an orthogonal basis $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$?

Gram-Schmidt Process

Then $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is an orthogonal basis for W
After normalization, you can get orthonormal basis.

Orthogonal/Orthonormal Basis

- Find orthogonal/orthonormal basis for P_{2}
- Define an inner product of P_{2} by

$$
u_{1}, u_{2}, u_{3} \quad\langle f(x), g(x)\rangle=\int_{-1}^{1} f(t) g(t) d t
$$

- Find a basis $\left\{1, x, x^{2}\right\}$
v_{1}, v_{2}, v_{3}

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{u}_{1} \\
& \mathbf{v}_{2}=\mathbf{u}_{2}-\frac{\left\langle\mathbf{u}_{2}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v} \\
& \mathbf{v}_{3}=\mathbf{u}_{3}-\frac{\left\langle\mathbf{u}_{3}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\left\langle\mathbf{u}_{3}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}=x^{2}-\frac{1}{3}
\end{aligned}
$$

Orthogonal/Orthonormal Basis

- Find orthogonal/orthonormal basis for P_{2}
- Define an inner product of P_{2} by

$$
\langle f(x), g(x)\rangle=\int_{-1}^{1} f(t) g(t) d t
$$

- Get an orthogonal basis $\left\{1, x, x^{2}-1 / 3\right\}$

$$
\left\|\mathbf{v}_{1}\right\|=\sqrt{\int_{-1}^{1} 1^{2} d x}=\sqrt{2} \quad\left\|\mathbf{v}_{2}\right\|=\sqrt{\int_{-1}^{1} x^{2} d x}=\sqrt{\frac{2}{3}}
$$

Orthonormal Basis

$$
\left\|\mathbf{v}_{3}\right\|=\sqrt{\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x}=\sqrt{\frac{8}{45}} \quad\left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} x, \sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right)\right\}
$$

